Study shows how diligent we have to be to keep surfaces germ-free

Towels and germs

During the COVID-19 pandemic, every frequently touched surface outside our home seems as dangerous as a hot pot right out of the oven. We won’t get burned if we touch it, but we might get infected with a potentially dangerous virus.

A recent study suggests that even organized efforts to clean surfaces can fall short, a reminder for us all that keeping our surroundings clean may require some additional work.

For 5 ½ weeks, researchers tagged surfaces of a small-animal veterinary practice daily with a fluorescent dye visible only under black light. They checked tagged surfaces 24 hours later to see if the marks were showing. Surfaces were considered cleaned if the dye was completely removed.

Results showed that overall, only half of all surfaces were adequately cleaned during the study period. Human-touch surfaces – such as medical instruments, dog run handles, and computer mice and keyboards – were cleaned less frequently than areas touched primarily by animals. The results were similar to studies from other veterinary clinics.

The researchers recommended creating checklists of surfaces that need to be regularly cleaned and educating all staff on the importance of proper cleaning to protect animal and human health.

“The concept of infectious diseases is around us all the time, but now it’s more important than ever to take steps to protect ourselves,” said senior study author Jason Stull, assistant professor of veterinary preventive medicine at The Ohio State University.

“A recent study concluded the coronavirus causing COVID-19 has the ability to survive on certain types of surfaces for hours to a few days. At veterinary practices, other businesses and certainly human hospitals, surface cleaning and disinfection is extremely important. People come in and may contaminate an area and that area potentially can serve as a source of infection for other people.”

The study is published in the February issue of the Journal of Small Animal Practice.

Stull specializes in veterinary infection control, including prevention of diseases that animals can share with each other or pass to humans – such as Salmonella, E. coli and parasites.

For the current work, Stull and colleagues assessed almost 5,000 surfaces over the course of the study. On average, 50 percent of surfaces were cleaned, with broad variations by type of surface and hospital location. The human-touch surfaces were the least likely to be cleaned.

The study assessed everyday cleaning practices in a place where people spend lots of time with different animals and different people. It’s not too much of a stretch to apply some lessons to what we’re experiencing now with COVID-19, Stull said.

“Plenty of industries and groups outside of human health care have ramped up their efforts to clean and disinfect common-touch surfaces. The take-home messages from our study can have important parallels for others, such as other veterinary clinics, but also groups such as grocery stores.

“Our study also highlights that, despite our best efforts, 100 percent cleaning and disinfection is unlikely to occur. This is important to remember, as regardless of where you visit, it’s also best to assume surfaces may be contaminated – and before you come back into your home, you should follow the recommendations to clean your hands and clean items you’ve handled.”

At home, Stull said, it makes sense to concentrate on cleaning common-touch surfaces like doorknobs and countertops.

“For the average person, it’s thinking about your list of things in your own home and ensuring that in some way that you’re actually hitting those pieces with reasonable effort,” he said.

On a normal day, people who have touched commonly shared surfaces should wash their hands before eating or scratching their noses. But will we remain diligent about this level of personal cleanliness – and community health – once the worst of the coronavirus threat is behind us?

“People have a tendency to swing from extremes,” Stull said. “Changing the innate behaviors of people is always difficult, and we’ve struggled in human and veterinary health care to change these everyday practices.

“The hard part is continuing these efforts. When we get to the end of this, and at some point that will happen, you will likely see people revert back to their norm. What we need is a culture shift, so people recognize that infection control through hand-washing and thorough cleaning of shared surfaces is a critically important thing we can all do all the time, and it has measurable impact.”

Study reveals how long COVID-19 remains infectious on cardboard, metal and plastic

James Lloyd-Smith in his UCLA officeReed Hutchinson/UCLA

The virus that causes COVID-19 remains for several hours to days on surfaces and in aerosols, a new study published in the New England Journal of Medicine found.

The study suggests that people may acquire the coronavirus through the air and after touching contaminated objects. Scientists discovered the virus is detectable for up to three hours in aerosols, up to four hours on copper, up to 24 hours on cardboard and up to two to three days on plastic and stainless steel.

“This virus is quite transmissible through relatively casual contact, making this pathogen very hard to contain,” said James Lloyd-Smith, a co-author of the study and a UCLA professor of ecology and evolutionary biology. “If you’re touching items that someone else has recently handled, be aware they could be contaminated and wash your hands.”

The study attempted to mimic the virus being deposited onto everyday surfaces in a household or hospital setting by an infected person through coughing or touching objects, for example. The scientists then investigated how long the virus remained infectious on these surfaces.

The study’s authors are from UCLA, the National Institutes of Health’s National Institute of Allergy and Infectious Diseases, the Centers for Disease Control and Prevention, and Princeton University. They include Amandine Gamble, a UCLA postdoctoral researcher in Lloyd-Smith’s laboratory.

In February, Lloyd-Smith and colleagues reported in the journal eLife that screening travelers for COVID-19 is not very effective. People infected with the virus — officially named SARS-CoV-2 — may be spreading the virus without knowing they have it or before symptoms appear. Lloyd-Smith said the biology and epidemiology of the virus make infection extremely difficult to detect in its early stages because the majority of cases show no symptoms for five days or longer after exposure.


“Many people won’t have developed symptoms yet,” Lloyd-Smith said. “Based on our earlier analysis of flu pandemic data, many people may not choose to disclose if they do know.”

The new study supports guidance from public health professionals to slow the spread of COVID-19:

  • Avoid close contact with people who are sick.
  • Avoid touching your eyes, nose and mouth.
  • Stay home when you are sick.
  • Cover coughs or sneezes with a tissue, and dispose of the tissue in the trash.
  • Clean and disinfect frequently touched objects and surfaces using a household cleaning spray or wipe.

Individual response to COVID-19 ‘as important’ as government action


Figure 1: Rate of infection with different measures in place, NB not quantitative predictions but robust qualitative illustrations Reprinted from The Lancet, https://doi.org/10.1016/S0140-6736(20)30567-5, Anderson et al., Figure 1, How will country-based mitigation measures influence the course of the COVID-19 epidemic?, Copyright (2020), with permission from Elsevier

How individuals respond to government advice on preventing the spread of COVID-19 will be at least as important, if not more important, than government action, according to a new commentary from researchers at the University of Oxford and Imperial College London in the UK, and Utrecht University and the National Institute for Public Health and the Environment in the Netherlands.

As the UK moves into the “delay” phase of dealing with a possible COVID-19 epidemic, a new commentary, published today in The Lancet, looks at what we know so far about the new virus. The researchers, led by Professor Sir Roy Anderson at Imperial College and Professor Deirdre Hollingsworth at the University of Oxford’s Big Data Institute, also suggest what can be done to minimise its spread and its impact.

Professor Hollingsworth said: ‘Completely preventing infection and mortality is not possible, so this is about mitigation. Our knowledge and understanding of COVID-19 will change over time, as will the response. High quality data collection and analysis will form an essential part of the control effort. Government communication strategies to keep the public informed will be absolutely vital.’

Vaccine development is already underway, but it is likely to be at least a year before a vaccine can be mass-produced, even assuming all trials are successful. Social distancing is therefore the most important measure, with an individual’s behaviour key. This includes early self-isolation and quarantine, seeking remote medical advice and not attending large gatherings or going to crowded places. The virus seems to largely affect older people and those with existing medical conditions, so targeted social distancing may be most effective.

Government actions will be important, including banning large events such as football matches, closing workplaces, schools and institutions where COVID-19 has been identified, and making sure that good diagnostic facilities and remotely accessed advice, like telephone helplines, are widely available. Ensuring the provision of specialist healthcare is also vital. The researchers warn, however, that large-scale measures may only be of limited effect without individual responsibility. All measures, of course, will have an economic impact, and some stricter measures, such as shutting down entire cities, as seen in Wuhan in China, may be less effective in Western democracies.

The aim of these social distancing measures is to “flatten the curve” of the infection, shown in the green trace in figure 1 (attached), slowing the spread and avoiding a huge peak in the number of new infections.

Flattening the curve can avoid overwhelming health services, keep the impact on the economy to within manageable levels and effectively buy more time to develop and manufacture effective vaccines, treatments and anti-viral drug therapies.

Sir Roy said: ‘Government needs to decide on the main objectives of mitigation–is it minimising morbidity and associated mortality, avoiding an epidemic peak that overwhelms health-care services, keeping the effects on the economy within manageable levels, and flattening the epidemic curve to wait for vaccine development and manufacture on scale and antiviral drug therapies. We point out they cannot achieve all of these – so choices must be made.’

The researchers highlight that wider support for the health service and health care workers during an epidemic is vital in any case – during the Ebola epidemic in 2014-15, the death rate from other causes like malaria and childbirth rose sharply due to overwhelmed health services. The number of deaths indirectly caused by Ebola was higher than the number of deaths from Ebola itself.

While much has been made in the media of a number of “superspreading” events, where one infected individual has inadvertently spread the disease to many others, the authors warn that there are superspreading events in every epidemic, and care should be taken not to make too much of these.

Containing the spread of an infectious disease relies on keeping the “reproduction number”, R0, the number of people infected by each infected person, below 1, when the pathogen will eventually die out. If R0 rises above 1, i.e. each infected person infects more than one other person, the pathogen will spread. Early data from China suggests that the R0 for COVID-19 could be as high as 2.5, implying that in an uncontained outbreak, 60% of the population could be infected. There are many unknowns in any new virus, however, and with COVID-19, it is not currently clear how long it takes for an infected person to become infectious to others, the duration of infectiousness, the fatality rate, and whether and for how long people are infectious before symptoms appear. It is also not currently clear if there are cases of COVID-19 which are non-symptomatic.

In comparisons with influenza-A (usual seasonal flu) and SARS, it currently seems likely that the epidemic will spread more slowly, but last longer, which has economic implications. Seasonal flu is generally limited by warmer weather, but as it is not known if this will affect COVID-19, the researchers say it will be important to monitor its spread in the Southern Hemisphere. Researchers will continue to collect and analyse data to monitor spread, while ongoing clinical research into treating seriously ill patients is also necessary.

One of the main priorities for researchers and policymakers will be contact tracing, with models suggesting that 70% of people an individual has come into contact with will need to be traced to control the early spread of the disease. The authors say other priorities include shortening the time from symptom onset to isolation, supporting home treatment and diagnosis, and developing strategies to deal with the economic consequences of extended absence from work.

Author Professor Hans Heesterbeek from the Department of Population Health Sciences at the University of Utrecht said: ‘Social distancing measures are societally and economically disruptive and a balance has to be sought in how long they can be held in place. The models show that stopping measures after a few months could lead to a new peak later in the year. It would be good to investigate this further.’

Quarantine on cruise ship resulted in more Corona patients

Professor at the Department of Public Health and Clinical Medicine, Umeå University, Sweden

The cruise ship Diamond Princess was quarantined for over two weeks resulting in more coronavirus infected passengers than if they would have disembarked immediately. Rather the opposite to what was intended. This according to a study conducted at Umeå University in Sweden.

“The infection rate onboard the vessel was about four times higher than what can be seen on land in the worst infected areas of China. A probable cause is how close people stay to one another onboard a vessel,” says Joacim Rocklöv, Professor of epidemiology at Umeå University and principal author of the article.

After a person travelling with the cruise ship Diamond Princess disembarked in Hong Kong and was tested positive for the coronavirus, Japanese authorities decided to disallow the 3,700 passengers onboard to leave the ship when it reached Yokohama. The ship was hence put in quarantine until 19 February. Passengers who showed signs of illness were, as far as possible, separated from other passengers onboard. When the quarantine in Yokohama in the end was removed and passengers could finally disembark, a total of 619 passengers had been infected by the coronavirus.

“If the ship had been immediately evacuated upon arrival in Yokohama, and the passengers who tested positive for the coronavirus and potential others in the risk zone had been taken care of, the scenario would have looked quite different. Our calculations show that only around 70 passengers would have been infected. A number that greatly falls short of the over 600 passengers the quarantine resulted in. The precautionary measure of putting the entire ship under quarantine was understandable, but due to the high risk of transmission on the ship, the decision is now questionable,” says Joacim Rocklöv.

At the same time, the study also shows that if the precautionary measures of isolating potential carriers had not been carried out onboard, another 2,300 people would have been infected.

Hospitalisations Fuel Fears of Aussie Flu Epidemic

Health experts warn people to get the free NHS flu jab in the coming weeks to reduce their risk

With the most common cause of influenza this winter having arrived from Australia, newly released official figures show that hospitalisations for flu increased 86% week on week.

Image result for Aussie flu youtube

In the week ending November 17th, the number of people admitted to hospital for flu was twice that of the previous week, according to the latest statistics from Public Health England.

Aussie flu originally hit the headlines following an epidemic in 2017, but is again set to sweep the UK following a troublesome flu season down-under. 

Britain experienced its longest flu season in a decade last year, lasting from October to mid-February.

patient Talk_1 mp4 from BroadcastExchange on Vimeo.

Public health experts believe we could be in for an equally long flu season this year as the quick-spreading Aussie flu combines with a decline in the uptake of the flu vaccine across the UK, putting vulnerable groups at risk of catching the virus and potentially developing more serious complications as a result including chest infections such as bronchitis, pneumonia or even the worsening of conditions such as asthma and diabetes. 

Despite the NHS offering a record number of people a free flu vaccine, with more than 25 million people eligible, 36% of pregnant women and 33% of under 65s who have pre-existing health conditions have received the jab this season so far. 

Symptoms for Aussie flu are like those of normal flu, including headaches, fevers, muscle aches, sore throat and coughs however are more severe Aussie flu is said to last much longer than the normal flu, and in some cases can lead to serious respiratory problems and other complications.

Due to this, people who are at risk of having flu complications such as children under the age of 3 or the over 65s, pregnant women and those who have a long-term health condition, are advised to get the flu jab this winter. We’re joined now by pharmacist Deep Patel to talk more about flu and its associated risks as well how we can best look after ourselves this winter.