Potential strategy against blood glucose drops in type 1 diabetes

Benrick and Rorsman

Anna Benrick and Patrik Rorsman, Sahlgrenska Academy at the University of Gothenburg, Credit Photo: University of Gothenburg.

New research suggests that inhibiting the hormone somatostatin could be a promising treatment approach for preventing severe drops in blood glucose levels in individuals with type 1 diabetes. A study conducted at the University of Gothenburg and other institutions has demonstrated the potential of this strategy to save lives.

When blood glucose levels decrease in healthy individuals, the pancreas releases a hormone called glucagon. This hormone prompts the liver to produce glucose, which helps to normalize the blood glucose levels. Glucagon has the opposite effect to insulin, another hormone that lowers blood glucose levels. Both insulin and glucagon are produced in the pancreas.

Individuals with type 1 diabetes have insufficient insulin as well as glucagon. When glucagon is not released during a drop in blood glucose, it results in dangerously low blood sugar levels, a condition that accounts for approximately 10% of all deaths in individuals with type 1 diabetes.

Restored ability to fend off drops in blood sugar

The latest study, published in the journal Nature Metabolism, introduces a potential new treatment approach for preventing dangerous blood sugar drops in individuals with type 1 diabetes. Patrik Rorsman, a leading researcher and Professor of Cellular Endocrinology at the Sahlgrenska Academy at the University of Gothenburg, as well as an active member of the University of Oxford, is one of the key contributors to this study.

The researchers examined groups of hormone-producing cells from the pancreas of humans and mice. They showed that in type 1 diabetes, these islets are unable to release glucagon when blood sugar is low. This is because the hormone somatostatin is released in greater amounts in type 1 diabetes and inhibits the release of glucagon.

Meanwhile, experiments showed that blocking somatostatin in mice with type 1 diabetes could restore the pancreas’s ability to release glucagon in the event of low blood sugar, thus preventing dangerously low blood sugar levels. The blocking was done pharmacologically.

Mapping of previously unknown signalling

Using genetically modified mice in which beta cells were activated by light, known as optogenetics, the interaction between different cell types in the pancreatic islets was also mapped: alpha cells that release glucagon, beta cells that release insulin and delta cells that release somatostatin.

The results provide an underlying explanation for how the reduced proportion of functioning beta cells in type 1 diabetes can be linked to the increased risk of blood sugar drops, something that has so far been unclear.

Anna Benrick is an Associate Professor of Physiology at the Sahlgrenska Academy at the University of Gothenburg and one of the co-authors.

“The new findings highlight an important and previously unknown role of electrical signaling that occurs through open cell connections between beta cells and delta cells,” she says. “If the electrical connections are lost, then the release of glucagon is reduced and the risk of a drop in blood pressure increases. The fact that this can be restored pharmacologically by blocking somatostatin opens up the possibility of preventing dangerous blood sugar drops in type 1 diabetes.”

Signaling switch in pancreatic β-cells determines anti-diabetic drug effectiveness

cAMP (cyclic AMP): An intracellular signaling molecule that regulates a variety of cellular functions such as insulin secretion. PKC (Protein Kinase C): An enzyme that adds phosphoric acid to proteins (phosphorylation), thereby regulating various intracellular signals such as insulin secretion. Adapted version of the Graphical Abstract in the JCI paper (DOI: 10.1172/JCI140046)

An international research group has clarified the action mechanism of incretin-based drugs (*1) in the treatment of diabetes. The research group headed by Professor SEINO Susumu included Researcher Okechi Oduori et al. (Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine), Professor SHIMOMURA Kenju (Fukushima Medical University), Professor Patrik Rorsman (University of Oxford, UK/University of Gothenburg, Sweden), and their teams.

Incretin-based drugs are used worldwide in the treatment of diabetes and in Japan they are currently prescribed to 70% of diabetic patients. However, the mechanism by which incretin-based drugs improve blood glucose levels has been poorly understood.

The findings of the study were published online in the American Scientific Journal Journal of Clinical Investigation on November 16, 2020. A commentary on this paper by Professor Colin G. Nichols and his colleagues at Washington University, St Louis, has also been published.

Main Point

  • This study revealed for the first time that Gs, a major G-protein signal in normal pancreatic β-cells (*2), is switched to another G-protein signal Gq in the diabetic β-cells to promote insulin secretion, and that incretin-based drugs act on this Gq to promote insulin secretion, thereby improving blood glucose levels.

Research Findings

Incretins are the gut hormones that are secreted by enteroendocrine cells after meal ingestion. The most important function of incretins is to promote insulin secretion from pancreatic β cells. GLP-1 and GIP are known as incretins.

While both GLP-1 and GIP are required to maintain normal blood glucose levels in healthy subjects, incretins in patients with type-2 diabetes (T2D) don’t function properly. To improve incretin action, incretin-based drugs are used for the treatment of T2D. However, the reason why these drugs are effective has remained unknown.

This research investigated the mechanism of insulin secretion by G-protein signaling in normal β cells and diabetic β cells. Until now, it has been well accepted that the G protein Gs functions as a major signal that promotes insulin secretion in normal β cells. The research group revealed that in diabetes, there is a switch from Gs to Gq signaling in the pancreatic β cells due to continuous β cell excitation (*4). Furthermore, the group discovered that incretin-based drugs act on Gq to amplify insulin secretion, thus improving blood glucose levels.

The Significance of this Research

The results of this research are important not only for illuminating the mechanism behind diabetes, but for diabetes therapies. They might also provide a basis for the development of new treatments.

###

Glossary

  1. Incretin-based drugs: These are drugs developed to treat diabetes, which act by amplifying blood glucose-dependent insulin secretion. DPP-4 inhibitors and GLP-1 receptor agonists are incretin-based drugs that are currently used.
  2. β (Beta) cells: These cells are found in the islets of Langerhans in the pancreas and secrete insulin, which regulates blood glucose levels.
  3. G proteins: Intracellular signaling molecules. Gs, Gq and Gi are among the known types of G proteins.
  4. Cell excitation: It is known that β cells, nerve cells and muscle cells are electrically excitable.