The study reveals brain mechanisms involved in genetically based autism; findings may lead to effective treatment

PhD student Inbar Fischer

PhD student Inbar Fischer Credit Tel Aviv University

A groundbreaking study from Tel Aviv University enhances our understanding of the biological mechanisms behind genetically based autism. It mainly focuses on mutations in the SHANK3 gene, which are responsible for nearly one million autism cases worldwide. Based on these findings, the research team applied a genetic treatment that improved the functioning of cells affected by the mutation, paving the way for future therapies for SHANK3-related autism.

The study was led by the lab of Prof. Boaz Barak and PhD student Inbar Fischer from the Sagol School of Neuroscience and the School of Psychological Sciences at Tel Aviv University.

Prof. Barak: “Autism is a common neurodevelopmental disorder affecting 1-2% of the global population, with one in every 36 boys in the U.S. diagnosed. Its causes include environmental, genetic, and social factors, such as advancing parental age at conception.  In my lab, we focus on the genetic causes of autism, particularly mutations in the SHANK3 gene. This gene is vital for the protein that binds receptors in neurons, essential for receiving chemical signals that enable neuron communication. Damage to SHANK3 can disrupt this communication, impairing brain development and function.  Our study aims to explore previously unknown mechanisms through which SHANK3 mutations affect brain development, leading to autism.”

Specifically, the research team focused on two components in the brain that have not yet been studied extensively in this context: non-neuronal brain cells (glia) called oligodendrocytes and the myelin they produce. Myelin tissue is a fatty layer that insulates nerve fibres (axons), similar to the insulating layer that coats electrical cables. When the myelin is faulty, the electrical signals transmitted through the axons may leak, disrupting the message transmission between brain regions and impairing brain function.

The team employed a genetically engineered mouse model for autism, introducing a mutation in the Shank3 gene that mirrors the mutation found in humans with this form of autism. Inbar Fischer: “Through this model, we found that the mutation causes a dual impairment in the brain’s development and proper function: first, in oligodendrocytes, as in neurons, the SHANK3 protein is essential for the binding and functioning of receptors that receive chemical signals (neurotransmitters and others) from neighbouring cells. This means that the defective protein associated with autism disrupts message transmission to these vital support cells. Secondly, when the function and development of oligodendrocytes is impaired, their myelin production is also disrupted. The faulty myelin does not properly insulate the neuron’s axons, thereby reducing the efficiency of electrical signal transmission between brain cells and the synchronization of electrical activity between different brain parts. In our model, we found myelin impairment in multiple brain areas and observed that the animals’ behaviour was adversely affected.”

The researchers then sought a method for fixing the damage caused by the mutation, hoping to develop a treatment for humans ultimately. Inbar Fischer: “We obtained oligodendrocytes from the brain of a mouse with a Shank3 mutation and inserted DNA segments containing the normal human SHANK3 sequence. Our goal was to allow the normal gene to encode a functional and normal protein, which would perform its essential role in the cell by replacing the defective protein. To our delight, following treatment, the cells expressed the normal SHANK3 protein, enabling the construction of a functional protein substrate to bind the receptors that receive electrical signals. In other words, the genetic treatment we had developed repaired the oligodendrocytes’ communication sites, essential for the cells’ proper development and function as myelin producers.”

To validate findings from the mouse model, the research team generated induced pluripotent stem cells from the skin cells of a girl with autism caused by a SHANK3 gene mutation identical to that in the mice. From these stem cells, they derived human oligodendrocytes with the same genetic profile. These oligodendrocytes displayed impairments similar to those observed in their mouse counterparts.

Prof. Barak concludes: “In our study, we discovered two new brain mechanisms involved in genetically induced autism: damage to oligodendrocytes and, consequently, damage to the myelin they produce. These findings have important implications – both clinical and scientific.  Scientifically, we learned that defective myelin played a significant role in autism and identified the mechanism causing the damage to myelin. Additionally, we revealed a new role for the SHANK3 protein: building and maintaining a functional binding substrate for receptors critical for message reception in oligodendrocytes (not just in neurons). We discovered that contrary to the prevailing view, these cells play essential roles in their own right, far beyond the support they provide for neurons — often seen as the leading players in the brain. In the clinical sphere, we validated a gene therapy approach that led to significantly improved development and function of oligodendrocytes derived from the brains of mice modelling autism. This finding offers hope for developing genetic treatment for humans, which could enhance the myelin production process in the brain. Furthermore, recognizing the significance of myelin impairment in autism—whether linked to the SHANK3 gene or not—opens new pathways for understanding the brain mechanisms underlying autism and paves the way for future treatment development.

New genetic clues have been discovered in the largest study of families with multiple children impacted by autism.

UCLA Health researchers have published the largest-ever study of families with at least two children with autism, uncovering new risk genes and providing new insights into how genetics influence the development of autism.

The new study, published on July 28 in the Proceedings of the National Academy of Sciences, also provides genetic evidence that language delay and dysfunction should be reconsidered as a core component of autism.

The majority of genetic studies on autism have concentrated on families with a single affected child, often excluding families with multiple affected children. Consequently, very few studies have explored the impact of rare inherited genetic variations or their interaction with the collective effect of multiple common genetic variations that contribute to the risk of developing autism.

“Study design is critical, and not enough attention has been paid to studying families with more than one affected child,” said lead study author Dr. Daniel Geschwind, the Gordon and Virginia MacDonald Distinguished Professor of Human Genetics, Neurology, and Psychiatry at UCLA.

“Autism is highly heritable. It is estimated that at least 50% of the genetic risk is attributed to common genetic variations, while another 15-20% is due to spontaneous mutations or predictable inheritance patterns. The remaining genetic risk is still not completely understood.”

For this study, researchers conducted whole-genome sequencing on 4,551 individuals from 1,004 families, including 1,836 children with autism and 418 without.

The researchers found seven potential genes linked to autism: PLEKHA8, PRR25, FBXL13, VPS54, SLFN5, SNCAIP, and TGM1. This is notable because previous studies needed larger cohorts to find a similar number of new risk genes. Most of the new genes were supported by rare inherited DNA variations passed from parents to children with autism.

The researchers also looked into polygenic risk, which involves a combination of commonly found genetic variations that can increase the likelihood of developing autism. They discovered that children who inherit rare mutations from unaffected parents, combined with polygenic risk, are more likely to have autism. This helps to explain why parents who have a single rare mutation may not display signs of autism, even if their children do. It also supports the liability threshold model, a concept in behavioral genetics that suggests there is an additive effect of genes influencing the probability of developing a certain trait.

Children who experienced language delay were more likely to inherit a polygenic score linked to autism, compared to children without language delays. This association was specific to autism and was not observed for other traits such as educational attainment, schizophrenia, or bipolar disorder. This suggests a connection between the genetic predisposition for autism and language delay.

The most recent edition of the professional guidebook used by mental health providers to diagnose disorders, the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5), does not consider language delay a core symptom of autism. This is due to the variability in language ability among people with autism.

“This association of general risk for autism that was strongest in those with language delay suggests that language is actually a core component of autism. This finding needs to be replicated in larger cohorts, especially those recruited more recently under DSM-5,” Geschwind said.

Autistic siblings share more of dad’s genome, not mum’s

Parental genome sharing among siblings with autism

CAPTION

For decades, Cold Spring Harbor Laboratory scientists and collaborators have invested millions of dollars into deciphering the genetic causes of autism Cold Spring Harbor Laboratory

Cold Spring Harbor Laboratory (CSHL) researchers have flipped the script on autism ) genetics.

Scientists long thought that siblings born with autism share more of their mother’s genome than their father’s. But CSHL Associate Professor Ivan Iossifov and Professor Michael Wigler have now shown that, in many cases, it’s dad who might be playing a bigger genetic role.

Autism spectrum disorders cover a range of neurological and developmental conditions. They can affect how a person communicates, socializes, learns, and behaves. Autism may also manifest as repetitive behaviors or restricted interests. In the United States, it affects around one in 36 children. 

“There are children diagnosed with autism who are high functioning,” Iossifov says. “They have a completely productive life, although they have some minor troubles in social interactions, as most of us do. But also, there are children diagnosed with autism who never learn to speak, and they have definitely a difficult life.”

Over the last two decades, CSHL scientists have led a multimillion-dollar effort to uncover the genetic origins of autism. They discovered thousands of genes that, when damaged, may cause a child to be born with autism. But their work was not able to account for all cases of autism. So Iossifov and Wigler set out to find the missing sources.

The duo analyzed the genomes of over 6,000 volunteer families. They found that in families that have two or more children with autism, the siblings shared more of their father’s genome. Meanwhile, in families where only one sibling had autism , the children shared less of their father’s genome. While the discovery reveals a new potential source of autism, it also poses a provocative question. Could other disorders play by the same genetic rules?

No one is sure how dad’s genome makes its mark on children with autism. But Iossifov has a couple interesting ideas. He thinks some fathers may carry protective mutations that fail to get passed on. Or fathers may pass down mutations that trigger the mother’s immune system to attack the developing embryo. Both theories offer hope for parents of children with autism .

“Our future research is exciting,” Iossifov says. “If one of those theories or two of them prove to be true, then it opens different treatment strategies, which can, in the future, affect quite a lot of families.”

In addition, this research offers helpful tools for educators and therapists. It may allow for earlier diagnoses and a better overall understanding of autism.

Researchers identify important role for gene in 16p11.2 deletion autism

Study finds that major vault protein is needed for homeostatic plasticity.David Orenstein

The MVP protein appears green in these stained neurons (red denotes neuronal marker SATB2).

The MVP protein appears green in these stained neurons (red denotes neuronal marker SATB2). Credits: Image courtesy of the Sur Lab

In a new study of one of the most common genetic causes of autism, neuroscientists at MIT’s Picower Institute for Learning and Memory have identified a molecular mechanism that appears to undermine the ability of neurons in affected mice to properly incorporate changes driven by experience. The findings, published in the Journal of Neuroscience, suggest that a particular gene, MVP, is likely consequential in people with 16p11.2 deletion syndrome.

Accounting for up to 1 percent of autism cases, 16p11.2 deletion occurs in people who are missing a small region of DNA near the center of one copy of chromosome 16. For years, scientists have been working to determine exactly how the reduced presence of 29 protein-encoding genes leads to clinical symptoms of the syndrome, such as autism-like behaviors, developmental delay, and intellectual disability.

“This has been a major problem for the field,” says senior author Mriganka Sur, the Newton Professor of Neuroscience at the Picower Institute and director of the Simons Center for the Social Brain at MIT. “People have looked at the entire region in mice. Our strategy was different. We thought, can we make a hypothesis about a critical gene that should play an important role?”

The team, led by postdoc Jacque Pak Kan Ip, focused on MVP, which is known for encoding a protein that shuttles RNAs and proteins from the nucleus to the rest of cells — a generally vital function. It is particularly important in the immune system and is known to regulate other genes as well. Although MVP is also known to be among the 29 genes affected in people with 16p11.2 deletion syndrome, its specific function in neurons has barely been investigated. To change that, the researchers devised a series of tests of MVP in a well-understood region in the visual cortex, where the brain processes sight from both eyes.

Keeping an eye open for change

Ip and the co-authors employed the time-honored protocol of monocular deprivation, or temporarily shutting one eye for a week. Normally, responses in visual cortex neurons related to the closed eye become weaker, but responses related to the remaining open eye become stronger, as if to compensate for the change in ability. This neural circuit adjustment to experience is called homeostatic plasticity.

In the normal mice, closing an eye for a week had the expected effect. But in mice with one copy of MVP missing, the researchers observed a telling difference. Responses related to the closed eye still weakened, but responses from the open eye did not get stronger. Homeostatic plasticity was disrupted.

“After seeing that MVP is responsible, we asked how MVP does it,” Ip says.

In those further tests, the team found that neurons in MVP-reduced mice experienced less electrical current across their excitatory synapse connections with other neurons, suggesting reduced functional excitatory synapses. They found other differences, too. MVP-reduced mice overexpressed the gene STAT1, an immune-system gene known to be regulated by MVP.

In 2014, Sur’s lab had found that mice without STAT1 have unusually strong open-eye responses after monocular deprivation. Now in the new study, with less MVP than usual and too much STAT1, mice experienced the opposite. Sure enough, when the researchers knocked down STAT1 as well as MVP, they were able to bring back a near-normal open-eye response to monocular deprivation, suggesting that loss of MVP disrupts homeostatic plasticity by allowing for an overabundance of STAT1.

Then Ip, Sur, and co-authors dug even deeper. They found that in MVP-reduced mice, neurons weren’t producing the expected open-eye responses because they weren’t expressing a key receptor, the GluA1 AMPA receptor, on the surface of dendritic spines.

Even though the findings were made, by design, in the visual cortex, the authors said they expect the disruption of homeostatic plasticity to occur elsewhere as well.

“This gene’s presence is reduced everywhere in the brain,” Sur notes.

The research adds to what scientists know about the connection between copy number variants (repeats or deletions of genes) and autism spectrum disorder, says Mustafa Sahin, a professor of neurology at Harvard University and director of the Translational Neuroscience Center and the Translational Research Program at Boston Children’s Hospital.

“Copy number variations in our genome are commonly associated with intellectual disability and autism spectrum disorder,” says Sahin, who holds the Rosamund Stone Zander Chair. “While 16p11.2 microdeletion was identified as a genetic cause of autism 10 years ago, identifying which gene or genes in this region play a crucial role in brain development and function has been a holy grail of research in this field. Sur lab has made major inroads into this question by demonstrating the MVP+/- mice show deficits similar to 16p11.2 mutant mice and even identifying potential therapeutic targets downstream of the MVP gene.” 

Relationship with immune system

In addition to illustrating how a specific gene may contribute to the symptoms of 16p11.2 deletion syndrome, Sur said, the findings also raise an intriguing, broader question about the central nervous system: Is it perhaps not a coincidence that some of its ability to adjust to and incorporate experience comes from genes that are also active in the immune system?

“The immune system is really a system of learning and memory,” Sur says. “You get infected and the body makes antibodies and the next time there is a memory of the infection. It is conceptually a very similar idea.”

Genetic study of heart defects and autism finds new causative genes

Genetic study of heart defects and autism finds new causative genes


Workflow of M-DATA CREDIT Yuhan Xie, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

Researchers identified almost two dozen genes that contribute to heart defects by studying genetic data from people born with congenital heart disease or autism. Hongyu Zhao of Yale University and colleagues developed a new algorithm to analyze genetic data from related conditions, which they describe in a new paper publishing November 4th in the journal PLOS Genetics.

Multiple diseases that start early in life appear to be linked to mutations in the same genes.  Recent research looking at de novo mutations—new mutations that pop up in children that were not present in the parents—has demonstrated a connection between congenital heart defects and autism. However, sequencing de novo mutations is expensive, so small studies of individual diseases have limited power to identify genes that increase a person’s risk of the disease.

In the new study, researchers developed an algorithm called M-DATA (Multi-trait De novo mutation Association Test with Annotations) that combines sequencing data from people with related conditions to identify genes that contribute to disease. They applied the new method to genetic data from people with congenital heart disease or autism and successfully identified 23 genes for congenital heart disease, including 12 that were previously unknown.

The researchers conclude that M-DATA is more effective at identifying genes that increase a person’s risk than analyses focusing on a single disease. This is because instead of analyzing a small number of genomes from affected individuals, M-DATA analyzes a larger number of combined genomes from multiple groups of people. The new method may help researchers identify previously unknown genes linked to disease and improve our understanding of the cause and potential treatment for different conditions.

Zhao adds, “By jointly analyzing de novo mutations from congenital heart disease (CHD) and autism, we identified novel genes that may play an important role in explaining the shared genetic etiology of CHD and autism.”

Yuhan Xie, the lead student of the research, says, “As a biostatistics student, it’s very motivating to find what could be meaningful to the patients and their families.”