Older people’s health
Can Exercise Reverse Aging? How to Exercise to Age Well
In this essential guide, Dr. Leslie Kernisan delves into the transformative power of exercise for older adults. Discover how tailored physical activity combats muscle loss and frailty and enhances mental well-being and cognitive function, paving the way for a life of independence and quality. This video is a treasure trove of expert insights, from the science behind muscle ageing reversal to practical advice on incorporating strength, aerobic, balance, and flexibility exercises into your routine.
Improve Memory by AVOIDING These Drugs
Dr. K’s related written article is here: 7 Common Brain-Slowing Anticholinergic Drugs Older Adults Should Use With Caution t’s essential to know which commonly used medications affect brain function and may worsen your memory. Learn why Benadryl, bladder relaxants, and a variety of other regularly prescribed anticholinergic drugs may impair brain function, exacerbate memory issues, and potentially raise your risk of Alzheimer’s disease. Board-certified geriatrician Leslie Kernisan, MD MPH, explains what all older adults and their families should know about anticholinergic medications, including how to identify them and reduce them when possible.
Why do we move slower the older we get? New study delivers answers
Mary Kaupas participates in an experiment to study how humans of various ages reach for targets. Tubes monitor her breathing to measure how much energy she uses. CREDIT Erik Summerside/Mary Kaupas
It’s one of the inescapable realities of ageing: The older we get, the slower we move—whether walking around the block or just reaching for the remote control.
A new study led by University of Colorado Boulder engineers helps explain why.
The research is one of the first studies to experimentally tease apart the competing reasons why people over age 65 might not be as quick on their feet as they used to be. The group reported that older adults might move slower, at least partly, because it costs them more energy than younger people—perhaps not too shocking for anyone who’s woken up tired the morning after an active day.
The findings could one day give doctors new tools for diagnosing a range of illnesses, including Parkinson’s disease, multiple sclerosis and even depression and schizophrenia, said study co-author Alaa Ahmed.
“Why we move the way we do, from eye movements to reaching, walking and talking, is a window into ageing and Parkinson’s,” said Ahmed, professor in the Paul M. Rady Department of Mechanical Engineering. “We’re trying to understand the neural basis of that.”
For the study, the group asked subjects aged 18 to 35 and 66 to 87 to complete a simple task: to reach a target on a screen, like playing a video game on a Nintendo Wii. By analyzing patterns of these reaches, the researchers discovered that older adults seemed to modify their motions under certain circumstances to conserve their limited energy supplies.
“All of us, whether young or old, are inherently driven to get the most reward out of our environment while minimizing the amount of effort to do so,” said Erik Summerside, a co-lead author of the new study who earned his doctorate in mechanical engineering from CU Boulder in 2018.
Using engineering to understand the brain
Ahmed added that researchers have long known that older adults tend to be slower because their movements are less stable and accurate. But other factors could also play a role in this fundamental part of growing up.
According to one hypothesis, the muscles in older adults may work less efficiently, meaning that they burn more calories while completing the same tasks as younger adults—like running a marathon or getting up to grab a soda from the refrigerator.
Alternatively, ageing might also alter the reward circuitry in the human brain. Ahmed explained that as people age, their bodies produce less dopamine, a brain chemical that gives them a sense of satisfaction after a job well done. If you don’t feel that reward as strongly, the thinking goes, you may be less likely to move to get it. People with Parkinson’s disease experience an even sharper decline in dopamine production.
In the study, the researchers asked more than 80 people to sit down and grab the handle of a robotic arm, which, in turn, operated the cursor on a computer screen. The subjects reached forward, moving the cursor toward a target. If they succeeded, they received a reward—not a big one, but enough to make their brains happy.
“Sometimes, the targets exploded, and they would get point rewards,” Ahmed said. “It would also make a ‘bing bing’ sound.”
Moving slower but smarter
That’s when a contrast between the two groups of people began to emerge.
Both the 18 to 35-year-olds and 66 to 87-year-olds arrived at their targets sooner when they knew they would hear that bing bing—roughly 4% to 5% sooner over trials without the reward. But they also achieved that goal in different ways.
The younger adults, by and large, moved their arms faster toward the reward. The older adults, in contrast, mainly improved their reaction times, beginning their reaches about 17 milliseconds sooner on average.
When the team added an 8-pound weight to the robotic arm for the younger subjects, those differences vanished.
“The brain seems to be able to detect very small changes in how much energy the body is using and adjusts our movements accordingly,” said Robert Courter, a co-lead author of the study who earned his doctorate in mechanical engineering from CU Boulder in 2023. “Even when moving with just a few extra pounds, reacting quicker became the energetically cheaper option to get to the reward, so the young adults imitated the older adults and did just that.”
The research seems to paint a clear picture, Ahmed said: Both the younger and older adults didn’t seem to have trouble perceiving rewards, even small ones. But their brains slowed down their movements under tiring circumstances.
“Putting it all together, our results suggest that the effort costs of reaching seem to be determining what’s slowing the movement of older adults,” Ahmed said.
The experiment can’t completely rule out the brain’s reward centers as a culprit behind why we slow down when we age. But, Ahmed noted, if scientists can tease out where and how these changes emerge from the body, they may be able to develop treatments to reduce the toll of aging and disease.
Well-functioning fat may be the key to fewer old-age ailments
Anders Gudiksen and one of the participants CREDIT Anders Gudiksen, University of Copenhagen
Fat tissue plays an important role in human health. However, our fat tissue loses function as we age, which can lead to type 2 diabetes, obesity, cancer and other ailments. High levels of lifelong exercise seem to counteract this deterioration. This, according to research at the University of Copenhagen, where biologists studied the link between aging, exercise and fat tissue function in Danish men.
How well does your fat function? It isn’t a question that one gets asked very often. Nonetheless, research in recent years suggests that the function of our fat tissue, or adipose tissue, is central to why our bodies decay with age, and strongly linked to human diseases like diabetes 2, cancer as obesity often develop and fat cells undergo functional changes as we get older. Thus, overall health is not just influenced by the amount of fat we bear, but about how well our fat tissue functions.
A new University of Copenhagen study demonstrates that even though our fatty tissue loses important function with age, a high volume of exercise can have a significant impact for the better.
“Overall health is closely linked with how well our fat tissue functions. In the past, we regarded fat as an energy depot. In fact, fat is an organ that interacts with other organs and can optimize metabolic function. Among other things, fat tissue releases substances that affect muscle and brain metabolism when we feel hungry and much more. So, it’s important that fat tissue works the way it should,” explains Assistant Professor Anders Gudiksen of the University of Copenhagen’s Department of Biology.
Fat cell function worsens with age
Gudiksen and a group of colleagues looked at the role of age and physical training in maintaining fat tissue function. Specifically, they studied mitochondria, the tiny power plants within fat cells. Mitochondria convert calories from food to supply cells with energy. To maintain the life processes within cells, they need to function optimally.
The researchers compared mitochondrial performance across a range of young and older untrained, moderately trained and highly exercise trained Danish men. The results demonstrate that the ability of mitochondria to respire – i.e., produce energy – decreases with age, regardless of how much a person exercises. However, Anders Gudiksen explains:
“Although mitochondrial function decreases with age, we can see that a high level of lifelong exercise exerts a powerful compensatory effect. In the group of well-trained older men, fat cells are able to respire more than twice as much as in untrained older men.”
More training means less waste in cells
Just as a car engine produces waste when converting chemical to usable energy, so do mitochondria. Mitochondrial waste comes in the form of oxygen free radicals, known as ROS (Reactive Oxygen Species). ROS that isn’t eliminated damages cells and the current theory is that elevated ROS can lead to a wide range of diseases including cancer, diabetes, cardiovascular disease and Alzheimer’s. Therefore, the regulation of ROS is important.
“The group of older people who train most form less ROS and maintain functionality to eliminate it. Indeed, their mitochondria are better at managing waste produced in fat cells, which results in less damage. Therefore, exercise has a large effect on maintaining the health of fat tissue, and thereby probably keeping certain diseases at bay as well,” says Gudiksen.
The researchers can also see that the older participants who exercised most throughout life have more mitochondria, allowing for more respiration and, among other things, an ability to release more of the fat-related hormones important for the body’s energy balance.
‘Our results show that you can actually train your fat tissue to a very high degree – but that you needn’t cycle 200km a week to achieve a positive effect. What you shouldn´t do, is do nothing at all,” concludes Anders Gudiksen, who hopes that the research world will focus more on what people can do to maintain the health of their fatty tissue.
The next step for the UCPH researchers will be to investigate where exactly cellular damage occurs when people don’t exercise and what impact this has on the body as a whole over time. Concurrently, the researchers are exploring ways to pharmacologically manipulate the mechanism in the mitochondria that converts calories into heat instead of depositing calories as fat, in turn lowering the production of the harmful oxygen radicals.
ABOUT THE STUDY
- Study subjects were 20-32-year-old untrained men and 62-73-year-old men, who throughout their lives were either untrained, moderately trained or highly trained. All men were healthy, unmedicated and had a BMI below 30.
- The researchers suggest that the study estimates are conservative as the participants are unlikely to represent the population as a whole, where a higher proportion of people are probably in poorer physical shape and suffer from health problems than the participants recruited. None of the study’s older participants took prescription medication, whereas a large proportion of the population in this age group otherwise does.
- The scientific paper about the study is published in The Journals of Gerontology.
- The study was conducted by Anders Gudiksen, Albina Qoqaj, Stine Ringholm and Henriette Pilegaard of the Department of Biology, Jørgen Wojtaszewski of the Department of Nutrition, Exercise and Sports, and Peter Plomgaard of the Department of Clinical Medicine at the University of Copenhagen.