Of the endless things I’ve spent money on during my ME/CFS recovery, here I share the 5 items that have actually helped me and been worth the money.
Of the endless things I’ve spent money on during my ME/CFS recovery, here I share the 5 items that have actually helped me and been worth the money.
Fatigue is an extremely common problem with several neurologic conditions including multiple sclerosis, stroke, parkinsons disease, and Guillain barre syndrome. Learn tips on how to manage your energy, improve your performance and improve your quality of life!
Scientists at Johns Hopkins Medicine using MRI scans and computer modeling say they have further pinpointed areas of the human brain that regulate efforts to deal with fatigue.
The findings, they say, could advance the development of behavioral and other strategies that increase physical performance in healthy people, and also illuminate the neural mechanisms that contribute to fatigue in people with depression, multiple sclerosis and stroke.
Results of the research were published online Aug. 12 in Nature Communications.
“We know the physiologic processes involved in fatigue, such as lactic acid build-up in muscles, but we know far less about how feelings of fatigue are processed in the brain and how our brain decides how much and what kind of effort to make to overcome fatigue,” says Vikram Chib, Ph.D., assistant professor of biomedical engineering at the Johns Hopkins University School of Medicine and research scientist at the Kennedy Krieger Institute.
Knowing the brain regions that control choices about fatigue-moderating efforts can help scientists find therapies that precisely alter those choices, says Chib. “It might not be ideal for your brain to simply power through fatigue,” says Chib. “It might be more beneficial for the brain to be more efficient about the signals it’s sending.”
For the study, Chib first developed a novel way to objectively quantify how people “feel” fatigue, a difficult task because rating systems can vary from person to person. Physicians often ask their patients to rate their fatigue on a scale of 1 to 7, but like pain scales, such ratings are subjective and varied.
To standardize the metric for fatigue, Chib asked 20 study participants to make risk-based decisions about exerting a specific physical effort. The average age of participants was 24 and ranged from 18 to 34. Nine of the 20 were female.
The 20 participants were asked to grasp and squeeze a sensor after training them to recognize a scale of effort. For example, zero was equal to no effort and 50 units of effort were equal to half the participant’s maximum force. The participants learned to associate units of effort with how much to squeeze, which helped to standardize the effort level among individuals.
The participants repeated the grip exercises for 17 blocks for 10 trials each, until they were fatigued, then were offered one of two choices for making each effort. One was a random (“risky”) choice based on a coin flip, offering the chance to exert no effort or a predetermined effort level. The other choice was a predetermined set effort level. By introducing uncertainty, the researchers were tapping in to how each subject valued their effort — a way, in effect, of shedding light on how their brains and minds decided how much effort to make.
Based on whether the participant chose a risky option versus the predetermined one, the researchers used computerized programs to measure how participants felt about the prospect of exerting particular amounts of effort while they were fatigued.
“Unsurprisingly, we found that people tend to be more risk averse — to avoid — effort,” says Chib. Most of the participants (19 of 20) opted for the risk-free choice of a predetermined effort level. This means that, when fatigued, participants were less willing to take the chance of having to exert large amounts of effort.
“The predetermined amount had to get pretty high in relative effort for participants to choose the coin toss option,” says Chib.
Among a separate group of 10 people trained on the gripping system but not given numerous, fatiguing trials, there was no significant tendency toward picking either the risky coin toss or defined effort.
Chib’s research team also evaluated participants’ brain activity during the gripping exercises using functional magnetic resonance imaging (fMRI) scans, which track blood flow through the brain and show which neurons are firing most often.
Chib’s team confirmed previous findings that brain activity when participants chose between the two options seemed to increase in all participants in an area of the brain’s known as the insula.
Also using fMRI scans, they took a closer look at the motor cortex of the brain when the participants were fatigued. This region of the brain is responsible for exerting the effort itself.
The researchers found that the motor cortex was deactivated at the time participants “decided” between the two effort choices. That finding is consistent, Chib says, with previous studies showing that when people perform repeated fatiguing exertions, motor cortex activity is decreased, associated with fewer signals being sent down to the muscles.
Participants whose motor cortex activity changed the least, in response to fatiguing exertion, were the ones who were most risk averse in their effort choices and were most fatigued. This suggests that fatigue might arise from a miscalibration between what an individual thinks they are able to achieve and the actual activity in motor cortex.
Essentially, the body attunes to the motor cortex when fatigued, because if the brain kept sending more signals to muscles to act, physiological constraints would begin to take over, for example, increased lactic acid, contributing to even more fatigue.
These findings, says Chib, may advance the search for therapies — physical or chemical — that target this pathway in healthy people to advance performance and in people with conditions that are associated with fatigue.
Leonard A. Jason is a DePaul University psychology professor who has studied chronic fatigue syndrome primarily in adults for the past 30 years. He also is director of the Center for Community Research in DePaul’s College of Science and Health. DePaul University/Jamie Moncrief
Most youth living with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) have not been diagnosed, according to a new prevalence study from researchers at DePaul University and Ann & Robert H. Lurie Children’s Hospital of Chicago, published by the journal Child & Youth Care Forum. Leonard A. Jason, a professor of psychology at DePaul University, led the seven-year study to screen more than 10,000 children and teenagers in the Chicago area.
The researchers found that less than 5% of youth in the study who tested positive for ME/CFS had been previously diagnosed with the illness. Of the children assessed, African American and Latinx youth were twice as likely to be living with undiagnosed ME/CFS. The study was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, one of the National Institutes of Health. Jason has been studying ME/CFS for more than 30 years and says the illness can affect all aspects of a child’s life, from physical functioning to attending school and participating in extracurricular activities.
“When you’re talking about a condition that’s as debilitating as this one, the health care response has not been good,” said Jason. “There aren’t that many physicians who are trained and skilled at diagnosing and treating this illness, and our health care system has not done a great job at trying to help people who are affected,” said Jason, director of DePaul’s Center for Community Research.
Working with Jason as co-principal investigator is Dr. Ben Z. Katz, a pediatric infectious disease specialist at the Ann & Robert H. Lurie Children’s Hospital of Chicago. Katz is also a professor of pediatrics at Northwestern University Feinberg School of Medicine. He has collaborated with Jason and his group since the late 1990s.
“Our finding that most youth with ME/CFS have not been previously diagnosed is comparable to findings in adults,” said Katz. “We definitely need better ways to identify people with this illness and to develop effective interventions for them. In particular, we need to reach African American and Hispanic youth, since in our study these groups had higher prevalence of ME/CFS. “
The prevalence of pediatric ME/CFS has been in dispute, so Jason and Katz set out to include a diverse sample of ethnic, socio-economic and demographic backgrounds. Other ME/CFS prevalence studies have drawn from tertiary care centers, which can exclude those without access to health care, explained Jason. The researchers tailored their approach by including a thorough medical and psychiatric examination, offering access to high-quality screening for those at-risk of having the illness.
Researchers screened a random sample of 10,119 youth ages 5-17 from 5,622 households. The first stage was a phone interview with parents and caretakers about the health and behavior of their children and teens. Missing school because of fatigue was one of the common symptoms among youth who showed a higher risk of having ME/CFS, and was a red flag for parents, said Jason.
Of those who screened positive over the phone, 165 youth went on to medical and psychiatric examinations. Following evaluations, a team of physicians made final diagnoses. Youth were given a diagnosis of ME/CFS if they met criteria for case definitions. Of the 42 youth diagnosed with ME/CFS, only 2 (4.8%) had been previously diagnosed with the illness.
Prevalence of pediatric ME/CFS was 0.75%, which is a bit less than 1%, with a higher prevalence among African American and Latinx youth compared to their Caucasian peers. “Clearly people of color do get this illness, and there are some myths that you have to be white middle class to have ME/CFS,” said Jason.
A lack of access to health care, and therefore less opportunity for an earlier diagnosis, could explain this racial disparity, according to Jason. “There are barriers to researchers gaining access to underserved populations. They may not trust institutions as easily, and they may not also have time to bring their children into appointments,” said Jason.
And, there is still stigma and misunderstanding about ME/CFS among health care providers. “They may not believe this is a condition, or might attribute it to fatigue,” said Jason.
The findings point to the need for better ways to identify and diagnose youth with this illness, said Jason, who has secured more than $46 million in research grant support during his 45-year professional career at DePaul. Co-authors of the study are DePaul University graduate students Madison Sunnquist, Chelsea Torres, Joseph Cotler and Shaun Bhatia.
“We’re trying to help people who have this illness have information that could be used to argue for more resources for diagnosis and treatment,” said Jason.