TURMERIC – AMAZING HEALTH BENEFITS

TURMERIC - AMAZING HEALTH BENEFITS - #superfoodsundays - YouTube


Turmeric scientifically known as Curcuma longa – is a bright yellow spice used throughout Asia for centuries. Grown for its root, turmeric has an ancient history of uses in cooking, fabric dyeing, cosmetics and especially as a traditional medicine in China and India. Its use in conditions such as rheumatism, severe pain, fatigue, and breathing problems has been well-documented for over “4,000 years”. Curcumin is a pigment found in turmeric that not only gives it its characteristic bright yellow hue but also has a range of health benefits. These include antibacterial, antimicrobial, anti-inflammatory, and antioxidant effects. Because of these wide-ranging functions, turmeric has been studied concerning arthritis, eye conditions, cancer, heart disease, Alzheimer’s disease and much more.

HOW TO BOOST IMMUNITY – How to boost Immune Power Naturally

HOW TO BOOST IMMUNITY - How to boost Immune Power Naturally - YouTube


The immune system is a collection of organs, cells, and tissues that work together to protect your body from disease caused mostly by pathogens (bacteria, viruses, parasites, and fungi). These cells are specifically designed for a certain kind of disease. All throughout the body, disease-fighting cells are stored in the immune system waiting for the signal to go to battle. IN this video we will discuss about some of the cool ways by which you can boost your immunity.

Efficient AI technology for MRI data analysis

AI technology for MRI data analysis

AI technology for MRI data analysis by Prof. Dr. Shadi Albarqouni, Professor of Computational Medical Imaging Research at University Hospital Bonn and Helmholtz AI Junior Research Group Leader at Helmholtz Munich CREDIT © Johann F. Saba, University Hospital Bonn (UKB)

An algorithm developed by researchers from Helmholtz Munich, the Technical University of Munich (TUM) and its University Hospital rechts der Isar, the University Hospital Bonn (UKB) and the University of Bonn is able to learn independently across different medical institutions. The key feature is that it is “self-learning”, i.e. it does not require extensive, time-consuming findings or markings by radiologists in the MRI images. This federated algorithm was trained on more than 1,500 MR scans of healthy study participants from four institutions while maintaining data privacy. The algorithm then was used to analyze more than 500 patient MRI scans to detect diseases such as multiple sclerosis, vascular disease, and various forms of brain tumors that the algorithm had never seen before. This opens up new possibilities for developing efficient AI-based federated algorithms that learn autonomously while protecting privacy. The study has now been published in the journal Nature Machine Intelligence.

Healthcare is currently being revolutionized by artificial intelligence. With precise AI solutions, doctors can be supported in diagnosis. However, such algorithms require a considerable amount of data and the associated radiological specialist findings for training. The creation of such a large, central database, however, places special demands on data protection. Additionally, the creation of the findings and annotations, for example the marking of tumors in an MRI image, is very time-consuming. To overcome these challenges, a multidisciplinary team from Helmholtz Munich, the University Hospital Bonn and the University of Bonn collaborated with clinicians and researchers at Imperial College London and TUM and its University Hospital rechts der Isar. The aim was to develop an AI-based medical diagnostic algorithm for MRI images of the brain, without any data annotated or processed by a radiologist. Furthermore, this algorithm was to be trained “federally”: In this way, the algorithm “comes to the data”, so that the medical image data requiring special protection could remain in the respective clinic and did not have to be collected centrally.

Learning from several institutes without data exchange

In their study, the researchers were able to show that the federated AI algorithm they developed outperformed any AI algorithm trained using only data from a single institution. “In his ‘The Wisdom of Crowds,’ James Surowiecki argued that large groups of people are smarter, no matter how smart an individual might be. Basically, this is how our federated AI algorithm works,” says Prof. Dr. Shadi Albarqouni, Professor of Computational Medical Imaging Research at the Department of Diagnostic and Interventional Radiology at University Hospital Bonn and Helmholtz AI junior research group leader at Helmholtz Munich. To pool knowledge about MRI images of the brain, the research team trained the AI algorithm in different and independent medical institutions without violating data privacy or collecting data centrally. “Once this algorithm learns what MRI images of the healthy brain look like, it will be easier for it to detect disease. To achieve this requires intelligent computational aggregation and coordination between the participating institutes,” says Prof. Dr. Albarqouni. PD Dr. Benedikt Wiestler, senior physician at TUM’s University Hospital rechts der Isar and also involved in the study, adds: “Training the model on data from different centers contributes significantly to the fact that our algorithm detects diseases much more robustly than other algorithms that are only trained with data from one center.”

Towards affordable collaborative AI solutions

By protecting patient data while reducing radiologists’ workloads, the researchers believe their federated AI technology will significantly advance digital medicine. “AI and healthcare should be affordable, and that is our goal. With our study, we have taken a step in this direction,” says Prof. Dr. Albarqouni. “Our major goal is to develop AI algorithms, collaboratively trained at different, decentralized medical institutes, including those with limited resources.”

The best way to take pills according to science

How Posture Affects Taking Pills


Your posture when taking a pill makes a big difference in how fast your body absorbs the medicine. CREDIT Khamar Hopkins/Johns Hopkins University

When you have a headache and reach for the pain reliever, you’re probably not thinking about your body position when you take the pill. But a new Johns Hopkins University study finds your posture can make a big difference—as much as an hour longer—in how fast your body absorbs the medicine.

The findings are based on what’s thought to be the first model to simulate the mechanics of drug dissolution on a human stomach.

“We were very surprised that posture had such an immense effect on the dissolution rate of a pill,” said senior author Rajat Mittal, a Johns Hopkins engineer and an expert in fluid dynamics. “I never thought about whether I was doing it right or wrong but now I’ll definitely think about it every time I take a pill.”

The work is newly published in Physics of Fluids.

In recent years models have been created to authentically represent the workings of several major organs, notably the heart. The model developed by the team, called StomachSim, appears to be one of the first to be able to conduct realistic simulation of the human stomach. Blending physics with biomechanics and fluid mechanics, StomachSim mimics what happening inside a stomach as it digests food, or in this case, medicine.

Most pills do not start working until the stomach ejects their contents into the intestine. So the closer a pill lands to the last part of the stomach, the antrum, the faster it starts to dissolve and empty its contents through the pylorus into the duodenum, the first part of the small intestine. If you’re aiming a pill for this part of the stomach, posture is critical to play into both gravity and the natural asymmetry of the stomach.

The team tested four postures. Taking pills while lying on the right side was by far the best, sending pills into the deepest part of the stomach to achieve a dissolution rate 2.3 times faster than even an upright posture. Lying on the left side was the worst. The team was very surprised to find that if a pill takes 10 minutes to dissolve on the right side, it could take 23 minutes to dissolve in an upright posture and over 100 minutes when laying on the left side.

“For elderly, sedentary or bedridden people, whether they’re turning to left or to the right can have a huge impact,” Mittal said.

Standing upright was a decent second choice, essentially tied in effectiveness with lying straight back.

The team also considered what stomachs that aren’t functioning at full strength due to gastroparesis caused by diseases such as diabetes and Parkinson’s Syndrome meant for pill dissolution. Even a small change in the conditions of the stomach can lead to significant differences in the outcome of an oral drug, said lead author Jae Ho “Mike” Lee, a former postdoctoral researcher at Johns Hopkins.

The impact of stomach disease on drug dissolution was similar to that of posture—which underscores how significant a difference posture makes.

“Posture itself has such a huge impact it, it’s equivalent to somebody’s stomach having a very significant disfunction as far as pill dissolution is concerned,” Mittal said.

Future work will attempt to predict how the changes in the biomechanics of the stomach affect how the body absorbs drugs, how food is processed in the stomach and the effect of posture and gastroparesis on food digestion.

Vagus nerve stimulation – an electric pill for inflammation?

aVNS


Individualised auricular vagus nerve stimulation at the right time and with the right strength. CREDIT TU Wien

A system out of balance

When a virus – such as SARS-CoV-2 – triggers an inflammatory response in the body, this information is transmitted to the brain via the sensory nervous system. The Vagus nerve, which extends from the brain to most organs in the human body, responds in a regulatory way with an anti-inflammatory reflex. However, if the anti-inflammatory response is too weak, an excessive inflammation may negatively affect the body’s own regeneration. To restore the balance between the initially protective inflammatory response and the regenerative processes, aVNS systems can be used.

To test their hypothesis that aVNS also supports the healing process in severe Covid-19 cases, TU researchers worked closely with the Hospital Favoriten, the Medical University of Vienna, the Health Service Centre of the Vienna Private Clinic, the Sigmund Freud Private University Vienna and the Immunological Day Clinic Vienna.

aVNS in severe Corona courses

In its most recent study, the research team was able to show that the positive effect that Vagus nerve stimulation has on the course of severe Corona diseases, which was already predicted in 2020 – at the beginning of the pandemic – actually exists. For this purpose, the team investigated the use of aVNS on patients who were acutely ill with Corona and were about to receive artificial respiration.

When the virus attacks the body, the inflammatory response and healing process can become unbalanced. The inflammatory response of the body then causes more damage than the virus itself. This balance must be restored – for example, by using an aVNS system. “The electrostimulation of the auricular vagus nerve was not only able to stop the inflammatory reaction in Covid-19 patients, it was even able to counteract it,” Eugenijus Kaniusas, professor at the Institute for Biomedical Electronics at TU Wien, emphasises the result.

Stimulating at the exact right time

The therapeutic success of aVNS also increases by adapting the system. If an aVNS system constantly sends electrical impulses, this can lead to side effects such as pain. The power consumption is also significantly higher compared to when the system reacts individually to the patient and sends targeted stimuli. To realise this, the researchers around PhD student Babak Dabiri have integrated a closed-loop control. Eugenijus Kaniusas explains: “This allows us to stimulate the Vagus nerve exactly when the brain is listening. This is the case when the heart is contracting and blood is flowing into the vessels or when the person is exhaling.” In this way, over- and under-stimulation can be prevented, which often results from persistent aVNS.

While simple measurements refer exclusively to the past, Kaniusas and his team worked with predictions: “In the study, we were able to show that predictive stimulation works and leads to the desired result. This was possible due to a feedback function of the system, via which the aVNS system can constructively interfere with the parasympathetic system,” the electrical engineer Kaniusas says. “The aVNS system listens to the measured biosignals and sends its stimulus at exactly the right time, like an intelligent electric pill,” he finally draws a comparison. This is an important step in the direction of personalisation, through which the research team also expects better therapeutic success and more acceptance by users.