Autism – Scientists identify neurons in the brain that drive competition and social behaviour within groups

New study demonstrates link between brain chemical and visual processing in autism
New study demonstrates link between brain chemical and visual processing in autism


New research in mice has identified neurons in the brain that influence competitive interactions between individuals and that play a critical role in shaping the social behaviour of groups. Published in Nature by a team led by investigators at Massachusetts General Hospital (MGH), the findings will be useful not only for scientists interested in human interactions but also for those who study neurocognitive conditions such as autism athat are characterized by altered social behaviour.

“Social interactions in humans and animals occur most commonly in large groups, and these group interactions play a prominent role in sociology, ecology, psychology, economics and political science,” says lead author S. William Li, an MD/PhD student at MGH. “What processes in the brain drive the complex dynamic behaviour of social groups remains poorly understood, in part because most neuroscience research thus far has focused on the behaviours of pairs of individuals interacting alone. Here, we were able to study the behaviour of groups by developing a paradigm in which large cohorts of mice were wirelessly tracked across thousands of unique competitive group interactions.”

Li and his colleagues found that the animals’ social ranking in the group was closely linked to the results of the competition, and by examining recordings from neurons in the brains of mice in real-time, the team discovered that neurons in the anterior cingulate region of the brain store this social ranking information to inform upcoming decisions.

“Collectively, these neurons held remarkably detailed representations of the group’s behaviour and their dynamics as the animals competed together for food, in addition to information about the resources available and the outcome of their past interactions,” explains senior author Ziv M. Williams, MD, a neurosurgical oncologist at MGH. “Together, these neurons could even predict the animal’s own future success well before competition onset, meaning that they likely drove the animals’ competitive behaviour based on whom they interacted with.”

Manipulating the activity of these neurons, on the other hand, could artificially increase or decrease an animal’s competitive effort and therefore control its ability to successfully compete against others. “In other words, we could tune up and down the animal’s competitive drive and do so selectively without affecting other aspects of their behaviour such as simple speed or motivation,” says Williams.

The findings indicate that competitive success is not simply a product of an animal’s physical fitness or strength, but rather, is strongly influenced by signals in the brain that affect the competitive drive. “These unique neurons are able to integrate information about the individual’s environment, social group settings, and reward resources to calculate how to best behave under specific conditions,” says Li.

In addition to providing insights into group behaviour and competition in different sociologic or economic situations and other settings, identifying the neurons that control these characteristics may help scientists design experiments to better understand scenarios in which the brain is wired differently. “Many conditions manifest in aberrant social behaviour that spans many dimensions, including one’s ability to understand social norms and to display actions that may fit the dynamical structure of social groups,” says Williams. “Developing an understanding of group behaviour and competition holds relevance to these neurocognitive disorders, but until now, how this happens in the brain has largely remained unexplored.”